

Title:	"GET A HALF-LIFE" Fossil Fuels an	GET A HALF-LIFE" Fossil Fuels and Radioactive Decay	
Author:	Jennifer Conner Lakewood Middle School North Little Rock		
Course:	Physical Science	Duration: 45 minutes	
Grade:	9-12		
Objective: The students of rocks in a se	will model radioactive decay in orc equence.	ler to explain how scientists determine the age	
Summary of L Students will I fossil fuels. In showing head The students sample and de result is a clea is useful in ex	esson: be introduced to radioactive dating this experiment, each coin repres s, so in any round we would expect will be using the scientific method etermine the" half life "of the coin ar- cut operational concept of the h plaining why fossil fuels are consid	g and its importance in our ongoing study of ents an atom. A coin has a 50 percent chance of it approximately half the coins to show heads. to test and observe the pattern of the coin sample from the obtained data. Hopefully, the half- life of radioactive substances. This concept ered nonrenewable.	
Arkansas Star	ıdards:		
CODE	STANDARD		
NS.12.PS.2	Collect and analyze scientific calculations, figures, and tabl	data using appropriate mathematical es	
NS.13.PS.5	Describe in detail the method	ls used by scientists in their research	
Instructional Short lecture	Strategies and Practices: using PowerPoint presentation fol	lowed by experiment and discussion questions.	
Bloom's Leve	: Highest Level Only		
Application ar	nd evaluation		
Materials and	Resources:		
(These web sing) phrases to fing	tes may change over time. If a wel d more current resources.)	o site is no longer available, use key words and	

• Carbon 14 Information-

http://www.esrl.noaa.gov/gmd/outreach/isotopes/c14tracer.html

- Background information-<u>https://www.britannica.com/science/radioactivity</u> <u>https://isaacphysics.org/concepts/cp_radioactive_decay</u>
- Experiment modified from-
- <u>https://4.files.edl.io/49c0/11/16/18/215219-23c3aba6-acb1-497d-986e-24e8c89e41a4.pdf</u>
- Lab activity example <u>http://www.education.com/science-fair/article/model-of-radioactive-decay/</u>
- Student Handout: Get A Half Life: Radioactive Decay
- 100 pennies
- Sturdy bag for shaking pennies
- Get A Half Life presentation

Formative Assessment:

Accurate and complete data table and construction of graph; Appropriate responses to analysis and discussion questions

Notes to Teacher:

This activity is designed to give the students an understanding of the relative age of fossil fuels and how this is determined. It is best to scaffold with some background information about radioactive decay. A PowerPoint presentation is included in this lesson. It is suggested that the instructor show the PowerPoint to students and then conduct the experiment.

The experiment calls for pennies, but candies such as M&Ms or Skittles would work if you wanted to give your students a special treat.

Student Activity:

- 1. Distribute Student Handout 1 Get A Half Life: Radioactive Decay
- 2. Use **Get A Half Life PowerPoint, slides 1-7** to provide background information for students.
- 3. Select student helper(s) to remove and count the pennies.
- 4. Have students copy the Data Chart from the handout to record their observations.
- 5. Use Get A Half Life PowerPoint, slides 8-10 to explain the experiment procedure.
- 6. Put the coins in the bag. Close the bag securely and shake the bag.
- 7. Now spill the coins out on a table being careful not to lose any.
- 8. Ask student helper(s) to gather and count all the coins that are heads. Put them aside.
- 9. In the Data Chart, students will record this number of coins in the column Coins Removed, then subtract and calculate the number remaining and put that number in the Coins Remaining column.
- 10. Collect the coins that were tails and put them back in the bag. Close the bag and shake!
- 11. Repeat steps 3, 4, and 5 until you have run out of coins to put back in the bag
- 12. Students will create a bar graph to display their data
- 13. To conclude the experiment, answer the analysis questions in the handout.

Student Handouts: Printable copies of the handouts are available at https://arkansasenergyrocks.com/educators/lesson-plans-9-12/. Student handouts accompany each lesson plan.

"GET A HALF-LIFE" | Student Handout 1 | Radioactive Decay

Radioactive carbon decays at a known rate. This allows scientists to look at the amount of decay in a fossil's radioactive carbon and determine a relative date.

Students should view articles in the following web sites for back ground information before they begin the experiment. If these web sites are no longer available, use key phrases—"calculate your radiation dose" and "radiation basics"—to locate current resources.

https://www.epa.gov/radiation/calculate-your-radiation-dose https://www.epa.gov/radiation/radiation-basics

Materials:

- 100 Pennies
- Sturdy bag large enough to hold pennies with room to shake

Directions:

- 1. Copy the Data Chart to record your observations.
- 2. Put the coins in the bag. Close the bag securely and shake the bag.
- 3. Now spill the coins out on the table in front of you. Do not lose any!
- 4. Gather and count all the coins that are heads. Put them aside. In the Data Chart record this number of coins in the column Coins Removed. Now subtract and calculate the number remaining and put that number in the Coins Remaining column.
- 5. Collect the coins that were tails and put them back in the bag. Close the bag and shake!
- 6. Repeat steps 3, 4, and 5 until you have run out of coins to put back in the bag.
- 7. Create a bar graph to display the data
- 8. Answer the analysis questions

Trials	# of Coins Removed	# of Coins Remaining
#1		
#2		
#3		
#4		
#5		
#6		
#7		
#8		
#9		
#10		

Analysis Questions:

- 1. Explain what each coin represents.
- 2. Note how many times you had to toss the coins before they were all used up. Did you find a pattern? What does the bar graph show?

3. If you repeated this experiment again, do you think you would get the same or different results? Why?

- 4. Explain why this experiment was useful in replicating a model of radioactive decay.
- 5. Why were the coins a good way to model half-lives? Would the model work as well if we used 1000 coins?

6. Why do we categorize fossil fuels as nonrenewable energy resources?

7. Explain how this activity this relates to fossil fuels?